
[Jayabal, 3(2): February, 2014]   ISSN: 2277-9655 
   Impact Factor: 1.852  

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[708-713] 

 

IJESRT 

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH 
TECHNOLOGY 

Design and Implementation of Locally Distributed Web Server Systems using Load 
Balancer 

R.Jayabal*1, R.Mohan Raj2 
*1

 M.E. Student, 2Lecturer, Department of Computer Science and Engineering, St.Peter 
University,Avadi,Tamil Nadu,India 

jayabal.mca35@gmail.com 
Abstract 

This Paper presents the design, implementation and evaluation of a load balancer for cluster-based SIP 
servers. Our load balancer performs session-aware request assignment to ensure that SIP transactions are routed to 
the proper back-end node that contains the appropriate session state. We presented three novel algorithms: CJSQ, 
TJSQ, and TLWL. The TLWL algorithms result in the best performance, both in terms of response time and 
throughput, followed by TJSQ.TJSQ has the advantage that no knowledge is needed of relative overheads of 
different transaction types.SIP applications that require good quality of service, these dramatically lower response 
times are significant. We showed that these algorithms provide significantly better response time by distributing 
requests across the cluster more evenly, thus minimizing occupancy and the corresponding amount of time a 
particular request waits behind others for service. TLWL-1.75 provides 25% better throughput than a standard hash-
based algorithm and 14% better throughput than a dynamic round-robin algorithm..  
 
Keywords: load balancing,  Session Initiation Protocol (SIP), TLWL. 
 

Introduction 
 The main objective of this paper to implement a 
load balancer, allocates the work to the clusters of SIP 
server using transaction least-work-left 
algorithm(TLWL). 
Load Balancer 

Network Load Balancing, a clustering 
technology included in the Microsoft Windows 2000 
Advanced Server and Datacenter Server operating 
systems, enhances the scalability and availability of 
mission-critical, TCP/IP-based services, such as Web, 
Terminal Services, virtual private networking, and 
streaming media servers. This component runs within 
cluster hosts as part of the Windows 2000 operating 
system and requires no dedicated hardware support. To 
scale performance, Network Load Balancing distributes 
IP traffic across multiple cluster hosts. It also ensures 
high availability by detecting host failures and 
automatically redistributing traffic to the surviving hosts. 
Network Load Balancing provides remote controllability 
and supports rolling upgrades from the Windows NT 4.0 
operating system. The unique and fully distributed 
architecture of Network Load Balancing enables it to 
deliver very high performance and failover protection, 
especially in comparison with dispatcher-based load 
balancers. This white paper describes the key features of 
this technology and explores its internal architecture and 
performance characteristics in detail. 

Call-Join-Shortest-Queue (CJSQ): 
CSJQ tracks the number of calls (in this paper, 

we use the terms call and session interchangeably) 
allocated to each back-end server and routes new SIP 
calls to the node with the least number of active calls. 
Transaction-Join-Shortest-Queue (TJSQ): 

TJSQ routes a new call to the server that has the 
fewest active transactions, rather than the fewest calls. 
This algorithm  

Improves on CJSQ by recognizing that calls in 
SIP are composed of the two transactions, INVITE and 
BYE, and that by tracking their completion separately, 
finer-grained estimates of server load can be maintained. 
This leads to better load balancing, particularly since 
calls have variable length and thus do not have a unit 
cost. 
Transaction-Least-Work-Left (TLWL): 

TLWL routes a new call to the server that has 
the least work, where work (i.e., load) is based on 
relative estimates of transaction costs. TLWL takes 
advantage of the observation that INVITE transactions 
are more expensive than BYE transactions. On our 
platform, a 1.75:1 cost ratio between INVITE and BYE 
results in the best performance. 
Session Initiation Protocol (SIP): 

The Session Initiation Protocol (SIP) is a 
general-purpose signaling protocol used to control 



[Jayabal, 3(2): February, 2014]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[708-713] 

 

various types of media sessions. SIP is a protocol of 
growing importance, with uses in Voice over IP, Instant 
Messaging, IPTV, Voice Conferencing, and Video 
Conferencing. SIP has a number of features which 
distinguish it from protocols such as HTTP. SIP is a 
transaction-based protocol designed to establish and tear 
down media sessions, frequently referred to as calls. Two 
types of state exist in SIP. The first, session state, is 
created by the INVITE transaction and is destroyed by 
the BYE transaction. The session-oriented nature of SIP 
has important implications for load balancing. 
Transactions corresponding to the same call must be 
routed to the same server; otherwise, the server will not 
recognize the call.  
Session Aware Request Assignment (SARA): 

Session-aware request assignment (SARA) is 
the process where a system assigns requests to servers 
such that sessions are properly recognized by that server, 
and subsequent requests corresponding to that same 
session are assigned to the same server. The session-
oriented nature of SIP has important implications for 
load balancing. Transactions corresponding to the same 
call must be routed to the same server; otherwise, the 
server will not recognize the call.  

Session-aware request assignment (SARA) is 
the process where a system assigns requests to servers 
such that sessions are properly recognized by that server, 
and subsequent requests corresponding to that same 
session are assigned to the same server. In contrast, 
sessions are less significant in HTTP.  

While SARA can be done in HTTP for 
performance reasons, it is not necessary for correctness. 
Many HTTP load balancers do not take sessions into 
account in making load-balancing decisions. 
Voice over Internet Protocol (VOIP): 

For systems running VOIP applications, the 
blade servers must not become overloaded by 
distributing the incoming calls. An imbalance of 
overloaded and under loaded servers results in dropped 
calls, jittery voice quality, or service interruptions. VOIP 
applications must remain available to users during 
periods of peak call volume. Incoming calls must be 
redirected if a server reaches peak capacity, or if a link 
fails, or if a server has been attacked. VOIP applications 
are also extremely time-sensitive-VOIP traffic must be 
guaranteed high priority using Quality of Service in order 
to minimize latency and maintain call quality. 

 
System Analysis 
Proposed System 

The session-oriented nature of SIP has 
important implications for load balancing. Transactions 
corresponding to the same call must be routed to the 

same server; otherwise, the server will not recognize the 
call. Session-aware request assignment (SARA) is the 
process where a system assigns requests to servers such 
that sessions are properly recognized by that server, and 
subsequent requests corresponding to that same session 
are assigned to the same server. A key aspect of our load 
balancer is that requests corresponding to the same call 
are routed to the same server. The load balancer has the 
freedom to pick a server only on the first request of a 
call. All subsequent requests corresponding to the call 
must go to the same server. Our new load balancing 
algorithms are based on assigning calls to servers by 
picking the server with the (estimated) least amount of 
work assigned but not yet completed. The concept of 
assigning work to servers with the least amount of work 
left to do have been applied. All responses from servers 
to clients first go through the load balancer which 
forwards the responses to the appropriate clients. By 
monitoring these responses, the load balancer can 
determine when a server has finished processing a 
request or call and update the estimates it is maintaining 
for the work assigned to the server. 
Transaction Least Work Left Algorithm: 

The TLWL algorithm addresses this issue by 
assigning different weights to different transactions 
depending on their relative costs. It is similar to TJSQ 
with the enhancement that transactions are weighted by 
relative overhead; in the special case that all transactions 
have the same expected overhead, TLWL and TJSQ are 
the same. Counters are maintained by the load balancer 
indicating the weighted number of transactions assigned 
to each server. New calls are assigned to the server with 
the lowest counter. A ratio is defined in terms of relative 
cost of INVITE to BYE transactions. We experimented 
with several values for this ratio of relative cost. TLWL-
2 assumes INVITE transactions are twice as expensive as 
BYE transactions and are indicated in our graphs as 
TLWL-2.  

We found the best performing estimate of 
relative costs was 1.75; these are indicated in our graphs 
as TLWL-1.75. Note that if it is not feasible to determine 
the relative overheads of different transaction types, 
TJSQ can be used, which results in almost as good 
performance as TLWL-1.75.TLWL estimates server load 
based on the weighted number of transactions a server is 
currently handling. For example, if a server is processing 
an INVITE (relative cost of 1.75) and a BYE transaction 
(relative cost of 1.0), the server has a load of 2.75.  

TLWL can be adapted to workloads with other 
transaction types by using different weights based on the 
overheads of the transaction types. In addition, the 
relative costs used for TLWL could be adaptively varied 
to improve performance. We did not need to adaptively 
vary the relative costs because the value of 1.75 was 



[Jayabal, 3(2): February, 2014] 
  
  

http: // www.ijesrt.com(C)International Journal of Engineering Sciences 

 

relatively constant. CJSQ, TJSQ, and TLWL are all 
novel load-balancing algorithms. In addition, we are not 
aware of any previous work that has successfully ad
least work left algorithms for load balancing with SARA.
Problem Definition and methods: 

As a cyber citizen, everyone has the security 
problem to maintain their private information.  
private information is maintained in the several websites. 
With the services on the internet increased, as a member 
of different websites user may face the problem of 
setting the passwords. For the convenience of the 
memory user will set a simple password for all the 
internet services. All private information will
the simple password is lost. If the user sets different 
password on different internet services, then the problem 
occurs when the user forget some of them when they 
have not been used for a long time.  
Neighbors Node Discover: 

Each and every client to know which neighbors 
clients are there in the network using of the neighbors 
node discover it shows how many clients is there in 
network, suppose new client arrive means it updated for 
the number neighbors client 
Load Balancer Design and Server Design:

In the first module the client side design is 
implemented using java FX technology. The clients are 
request to another client within a group. After the request 
is confirmed each other communicate vice versa. The 
formed group member details are shown in each client 
side. Based on the client group they have to 
communicate each other via load balancer and server.
Client Design and Request: 
The load balancer is designed and communicates with 
the server clusters, All the servers are frequently 
communicated with the load balancer, based on the 
communication the load balancer allocate the work to the 
server. Initially the load balancer allocates the work to 
the server to own interest. If the server is finish the work, 
it will be send the feedback to the load balancer about 
work status, how many works left. 
Client –Server Communication using Load Balancer:

The client is communicating to the server 
through load balancer. So every communication is 
allocated to the server by the load balancer. If an
server is failed that status also update to the load balancer
 
 
 
 
 
 
 
 
 

   ISSN: 2277
 Impact Factor: 1.852
 

International Journal of Engineering Sciences & Research Technology
[708-713] 

relatively constant. CJSQ, TJSQ, and TLWL are all 
balancing algorithms. In addition, we are not 

aware of any previous work that has successfully adapted 
least work left algorithms for load balancing with SARA. 

As a cyber citizen, everyone has the security 
problem to maintain their private information.  The 
private information is maintained in the several websites. 
With the services on the internet increased, as a member 
of different websites user may face the problem of 

. For the convenience of the 
memory user will set a simple password for all the 
internet services. All private information will be lost if 
the simple password is lost. If the user sets different 
password on different internet services, then the problem 
occurs when the user forget some of them when they 

y client to know which neighbors 
clients are there in the network using of the neighbors 
node discover it shows how many clients is there in 
network, suppose new client arrive means it updated for 

rver Design: 
In the first module the client side design is 

implemented using java FX technology. The clients are 
request to another client within a group. After the request 
is confirmed each other communicate vice versa. The 

shown in each client 
side. Based on the client group they have to 
communicate each other via load balancer and server. 

The load balancer is designed and communicates with 
the server clusters, All the servers are frequently 
ommunicated with the load balancer, based on the 

communication the load balancer allocate the work to the 
server. Initially the load balancer allocates the work to 
the server to own interest. If the server is finish the work, 

o the load balancer about 

Server Communication using Load Balancer: 
The client is communicating to the server 

through load balancer. So every communication is 
allocated to the server by the load balancer. If any of the 
server is failed that status also update to the load balancer 

Data Flow Diagram   

 
Fig 3.1: Architecture Diagram

 
• The client communicate to another client using 

of the server and with help of the load balancer 
in this load balancer using
load balancing algorithms CJSQ, TJSQ, and 
TLWL are implemented in a working load 
balancer for SIP server clusters.

• The server details to be updated to the load 
balancer 

• The load balancer has the freedom to pick a 
server only on the first request of a call. 

• Increase throughput and efficiency of load 
balancing. 

• Dynamic estimates of back
exploiting differences in processing costs for 
different SIP transactions.

 Load Balancer Architecture: 
 

Fig 3.2: Load Balancer Archi
 
 

ISSN: 2277-9655 
Impact Factor: 1.852

& Research Technology 

 

Architecture Diagram 

The client communicate to another client using 
of the server and with help of the load balancer 
in this load balancer using of the some of the 
load balancing algorithms CJSQ, TJSQ, and 
TLWL are implemented in a working load 
balancer for SIP server clusters. 
The server details to be updated to the load 

The load balancer has the freedom to pick a 
request of a call.  

Increase throughput and efficiency of load 

Dynamic estimates of back-end server load, 
exploiting differences in processing costs for 
different SIP transactions. 

 
Load Balancer Architecture 



[Jayabal, 3(2): February, 2014]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[708-713] 

 

 Data Flow Diagram 
A data flow diagram (DFD) is a graphical 

representation of the "flow" of data through an 
information system, modeling its process aspects. Often 
they are a preliminary step used to create an overview of 
the system which can later be elaborated. DFDs can also 
be used for the visualization of data processing 
(structured design). There are different notations to draw 
data flow diagrams defining different visual 
representations for processes, data stores, data flow, and 
external entities. 
 
Dataflow Diagram Level 0  

 
Fig 3.3: Dataflow Diagram Level 0 

� The client communicates to another client using 
of client request to that particular client.  

� Using of the client request only to communicate 
one client to another client. 

 Dataflow Diagram Level 1: 
� Client send request to the load balancer then 

client communicated to the load balancer 
� Load balancer directly communicate to server 

and the server details to be updated to the load 
balancer 

� Client request to be transfer and distributed to 
the which server is free based on the load 
balancer algorithm Transaction Least Work Left 
to applied and select the server and to provide 
the service to client 

Fig 3.4: Dataflow Diagram Level 1 
 

Dataflow Diagram Level 2: 
� Client request to be transfer and distributed to 

the which server is free based on the load 
balancer algorithm Transaction Least Work Left 
to applied and select the server and to provide 
the service to client 

� The server status to be updated to updated to 
load balancer then based on the client request to 
allocate to server services vice versa 

Fig 3.5: Dataflow Diagram Level 2 
 
System  Implementation 

Our system design and control is targeted 
towards the implementation of the project. Though the 
implementation is not as crucial as system design it also 
requires something’s to take care. Blowfish 
cryptographic algorithm is the core technology used in 
this project to implement the password management 
system. 
Blowfish Algorithm 

Blowfish is a symmetric block cipher that can 
be effectively used for encryption and safeguarding of 
data. It takes a variable-length key, from 32 bits to 448 
bits, making it ideal for securing data. Blowfish was 
designed in 1993 by Bruce Schneier as a fast, free 
alternative to existing encryption algorithms. Blowfish 
is unpatented and license-free, and is available free for all 
uses.  

Blowfish Algorithm is a Feistel Network, 
iterating a simple encryption function 16 times. The 
block size is 64 bits, and the key can be any length up to 
448 bits. Blowfish is a variable-length key block cipher. 
It is suitable for applications where the key does not 
change often, like a communications link or an automatic 
file encryptor. It is significantly faster than most 



[Jayabal, 3(2): February, 2014]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[708-713] 

 

encryption algorithms when implemented on 32-bit 
microprocessors with large data caches.  
Feistel Networks  

A Feistel network is a general method of 
transforming any function (usually called an F- function) 
into a permutation. It was invented by Horst Feistel and 
has been used in many block cipher designs. The working 
of a Feistal Network is given below:  

• Split each block into halves  
• Right half becomes new left half  
• New right half is the final result when the left 

half is XOR'd with the result of applying f to the 
right half and the key.  

• Note that previous rounds can be derived even if 
the function f is not invertible.  

The Blowfish Algorithm:  
• Manipulates data in large blocks  
• Has a 64-bit block size.  
• Has a scalable key, from 32 bits to at least 256 

bits.  
• Uses simple operations that are efficient on 

microprocessors.  
Employs precomputable subkeys.  
         On large-memory systems, these subkeys can be 
precomputed for faster  operation. Not precomputing the 
subkeys will result in slower operation, but it should still 
be possible to encrypt data without any precomputations.  
Consists of a variable number of iterations.  
      For applications with a small key size, the trade-off 
between the complexity of a brute-force attack and a 
differential attack make a large number of iterations 
superfluous. Hence, it should be possible to reduce the 
number of iterations with no loss of security (beyond that 
of the reduced key size).  
Uses subkeys that are a one-way hash of the key.  
     This allows the use of long passphrases for the key 
without compromising security. Uses a design that is 
simple to understand. This facilitates analysis and 
increase the confidence in the algorithm. In practice, this 
means that the algorithm will be a Feistel iterated block 
cipher.  

 
Conclusion  

This Paper presents the design, implementation 
and evaluation of a load balancer for cluster-based SIP 
servers. Our load balancer performs session-aware 
request assignment to ensure that SIP transactions are 
routed to the proper back-end node that contains the 
appropriate session state. We presented three novel 
algorithms: CJSQ, TJSQ, and TLWL. The TLWL 
algorithms result in the best performance, both in terms 
of response time and throughput, followed by 
TJSQ.TJSQ has the advantage that no knowledge is 

needed of relative overheads of different transaction 
types.SIP applications that require good quality of 
service, these dramatically lower response times are 
significant. We showed that these algorithms provide 
significantly better response time by distributing requests 
across the cluster more evenly, thus minimizing 
occupancy and the corresponding amount of time a 
particular request waits behind others for service. 
TLWL-1.75 provides 25% better throughput than a 
standard hash-based algorithm and 14% better 
throughput than a dynamic round-robin algorithm. 

Our results are influenced by the fact that SIP 
requires SARA. However, even where SARA is not 
needed, variants of TLWL and TJSQ could be deployed 
and may offer significant benefits over commonly 
deployed load-balancing algorithms based on round 
robin, hashing, or response times. Using of SIP will 
develop Video chatting in the futures. 
 
References 

[1]  D. C.Anderson, J. S. Chase, and A.Vahdat, 
“Interposed request routing for scalable   
network storage,” in Proc. USENIX OSDI, San 
Diego, CA, Oct. 2000, pp. 259–272. This article 
has been accepted for inclusion in a future issue 
of this journal. Content is final as presented, 
with the exception of pagination. JIANG et al.: 
LOAD BALANCER FOR SIP SERVER 
CLUSTERS 13 

[2]  M. Aron and P. Druschel, “TCP 
implementation enhancements for improving 
Webserver performance,” Computer Science 
Department, Rice University, Houston, TX, 
Tech. Rep. TR99-335, Jul. 1999. 

[3]  M. Aron, P. Druschel, and W. Zwaenepoel, 
“Efficient support for P-HTTP in cluster-based 
Web servers,” in Proc. USENIX Annu. Tech. 
Conf., Monterey, CA, Jun. 1999, pp. 185–198. 

[4]  M. Aron, D. Sanders, P. Druschel, and W. 
Zwaenepoel, “Scalable content-aware request 
distribution in cluster-based network servers,” 
in Proc. USENIX Annu. Tech. Conf., San Diego, 
CA, Jun. 2000, pp. 323–336. 

[5]  V. Cardellini, E. Casalicchio, M. Colajanni, and 
P. S. Yu, “The state of the art in locally 
distributed Web-server systems,” Comput. 
Surveys, vol. 34, no. 2, pp. 263–311, Jun. 2002. 

[6]  J. Challenger, P. Dantzig, and A. Iyengar, “A 
scalable and highly available system for serving 
dynamic data at frequently accessed Web sites,” 
in Proc. ACM/IEEE Conf. Supercomputers., 
Nov. 1998, pp. 1–30. 

[7]  G. Ciardo, A. Riska, and E. Smirni, 
“EQUILOAD: A load balancing policy for 



[Jayabal, 3(2): February, 2014]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[708-713] 

 

clustered Web servers,” Perform. Eval., vol. 46, 
no. 2-3, pp. 101–124, 2001. 

[8]  D. Dias,W. Kish, R.Mukherjee, and R. Tewari, 
“A scalable and highly available Web server,” 
in Proc. IEEE Compcon, Feb. 1996, pp. 85–92. 

[9]  Z. Fei, S. Bhattacharjee, E. Zegura, and M. 
Ammar, “A novel server selection technique for 
improving the response time of a replicated 
service,” in Proc. IEEE INFOCOM, 1998, vol. 
2, pp. 783–791. 

[10]  H. Feng, V. Misra, and D. Rubenstein, “PBS: A 
unified priority-based scheduler,” in Proc. 
ACM SIGMETRICS, San Diego, CA, Jun. 2007, 
pp. 203–214. 

[11]  M. Harchol-Balter, M. Crovella, and C. D. 
Murta, “On choosing a task assignment policy 
for a distributed server system,” J. Parallel 
Distrib. Comput., vol. 59, no. 2, pp. 204–228, 
1999. 

[12]  V. Hilt and I. Widjaja, “Controlling overload in 
networks of SIP servers,” in Proc. IEEE ICNP, 
Orlando, FL, Oct. 2008, pp. 83–93. [18] IBM, 
“Application switching with Nortel Networks 
Layer 2–7 Gigabit Ethernet switch module for 
IBM Blade Center,” 2006 [Online]. Available: 
http://www.redbooks.ibm.com/abstracts/redp35
89.html?Open 

[13]  A. Iyengar, J. Challenger, D. Dias, and P. 
Dantzig, “High-performance Web site design 
techniques,” IEEE Internet Comput., vol. 4, no. 
2, pp. 17–26, Mar./Apr. 2000. 

[14]  E. Nahum, J. Tracey, and C. P. Wright, 
“Evaluating SIP proxy server performance,” in 
Proc. 17th NOSSDAV, Urbana–Champaign, IL, 
Jun. 2007, pp. 79–85. 

[15]  Foundry Networks, “ServerIron switches 
support SIP load balancing VoIP/SIP traffic 
management solutions,” Accessed Jul. 2007 
[Online]. Available: 
http://www.foundrynet.com/solutions/sol-app-
switch/solvoip- sip 

[16]  V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. 
Druschel, W. Zwaenepoel, and E. M. Nahum, 
“Locality-aware request distribution in cluster-
based network servers,” in Proc. Archit. 
Support Program. Lang. Oper. Syst., 1998, pp. 
205–216. 

[17]  C. Shen, H. Schulzrinne, and E. M. Nahum, 
“Session initiation protocol (SIP) server 
overload control: Design and evaluation,” in 
Proc. IPTComm, Heidelberg, Germany, Jul. 
2008, pp. 149–173. 

[18]  K. Singh and H. Schulzrinne, “Failover and 
load sharing in SIP telephony,” in Proc. 
SPECTS, Jul. 2005, pp. 927–942. 

[19]  SPEC SIP Subcommittee “Systems Performance 
Evaluation Corporation (SPEC),”, 2011 
[Online]. Available: 
http://www.spec.org/specsip/ 

[20]  OpenSIPS, “The open SIP express router 
(OpenSER),” 2011 [Online]. Available: 
http://www.openser.org 

[21]  L. Zhang, S. Deering, D. Estrin, S. Shenker, and 
D. Zappola, “RSVP: A new resource 
reservation protocol,” IEEE Commun. Mag., 
vol. 40, no. 5, pp. 116–127, May 2002. 


